

C. Derive the equation for point form of Ampere's law. (06 Marks)

(06 Marks)

(06 Marks)

(06 Marks)

Module-4

- Derive an expression for force between two conductors carrying current in opposite 7 a. (08 Marks) direction.
 - A current element 4 cm long is along y-axis with a current of 10 mA flowing in y-direction. b. Determine the force on the current element due to the magnetic field, if $\overline{H} = \frac{5}{a_x} A/M$.
 - c. State and explain Lorentz force equation.

OR

- Derive the boundary conditions at the interface between two magnetic materials of different 8 a. (08 Marks) permeabilities. (06 Marks)
 - Derive an expression for inductance of solenoid. b.
 - c. Given a ferrite material which will operate in a linear mode with B = 0.05 Tesla. Let $\mu_r = 50$. Calculate values of X_m , M and H. (06 Marks)

Module-5

- State and explain Faraday's law. 9 a.
 - What are the drawbacks of Ampere's law? Hence derive an expression for modified b. (08 Marks) ampere's law.
 - Write Maxwell's equation in point form and integral form of time varying fields. (06 Marks) C.

OR

10 State and explain Poynting's theory with derivation $\mathbf{P} = \mathbf{E} \times \mathbf{H}$. a. (08 Marks)

The magnetic field intensity of uniform plane wave in air is 20 A/m in \hat{a}_{v} direction. The b.

wave is propagating in \hat{a}_z direction at an angular frequency of 2×10^9 rad/sec. Find

- Phase shift constant. (i)
- (ii) Wavelength.
- Frequency. (iii)
- Briefly explain the skin effect in conductors. C.

(06 Marks) (06 Marks)